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Let X be a Banach space, C a set in X, and x ¥X. An element y ¥ C is
called an element of best approximation of x in C if we have

||x−y||=inf{||x−z|| : z ¥ C}.

If the element of best approximation of x in C is unique, we denote it by
p(x | C). The operator p( · | C) is called the best approximation operator of
X onto C.
A space X is said to be strictly convex if for each pair x, y ¥X with
||x||=||y||=1 and x ] y we have ||x+y|| < 1. The space X is said to be
smooth if at each point 0 ] x ¥X , there is only one support functional fx,
i.e., fx ¥Xg, ||fx ||Xg=1, and fx(x)=||x||.
Let (G, S, m) be a s-finite measure space and denote by S=S(G, S, m)
the set of all equivalence classes of S-measurable real-valued functions on
G with algebraic operations and order defined in a natural way. A linear
subset X of S endowed with some norm || · || is called a Banach ideal space
if (X, || · ||) is complete and it satisfies the condition that x ¥X, y ¥ S, and



|y| [ |x| imply y ¥X and ||y|| [ ||x||. The norm on a Banach ideal space is
called order-continuous if in addition it satisfies the condition that xn a 0
implies ||xn ||Q 0. It is well known that Lp(1 [ p [.), Orlicz spaces,
Lorentz spaces, Orlicz–Lorentz spaces, and Musielak–Orlicz spaces are
all Banach ideal spaces. Criterions of order-continuity, strict convexity,
smoothness, and reflexivity of these spaces can be found in the literature.
For a Banach ideal space X(G, S, m) (which is simply denoted by X(S)),
let S − be a s-sublattice of the s algebra S and X(S −)={x ¥X(S) : x is S −

measurable}. If p( · | X(S −)) exists, it is called a prediction operator. Pre-
diction operators have wide applications in probability, Bayes estimation
theory, prediction theory, and many other fields. Various authors have
studied these in the past 30 years [2–12]. For example, Dykstra has studied
the case L2 in [4]. Landers and Rogge have studied the case Lp in [6] and
then obtained a result of Orlicz space LM for the modular in [5]. Duan and
Chen gave a necessary condition (which is not sufficient) and a sufficient
condition (which is not necessary) for prediction operators in LM in [11].
In 1995, Wang et al. [12] obtained a necessary and sufficient condition for
an operator in LM to be a prediction operator. The purpose of this paper is
to generalize the main result in [12] to Banach ideal spaces.

Theorem. Let X(S) be a reflexive, strictly convex, and smooth Banach
ideal space. Then the operator T: X(S)QX(S) is a prediction operator (i.e.,
there exists s-sublattice S − … S such that T( · )=p( · | X(S −)) if and only if it
satisf ies the following conditions:

(i) T(Tx)=Tx(x ¥X(S));
(ii) r ¥ TX if r ¥ R;
(iii) x, y ¥ TX and a, b ¥ R+ imply ax+by ¥ TX;
(iv) {xn} … TX and ||xn−x||Q 0(nQ.) imply x ¥ TX;
(v) x ¥ TX and r ¥ R imply xK r, xN r ¥ TX;
(vi) qA ¥ TX and a, b ¥ R+ and r ¥ R imply ||x−Tx|| [ ||x−aTx−

bqA+r||,

where R is the set of all real numbers, R+ is the set of non-negative numbers,
and qA is the characteristic function of the set A.

Proof. Necessity. Suppose S − is a s-sublattice of S and T( · )=
p( · | X(S −)). Obviously, TX=X(S −), so (i) is clear.
Note that r ¥ R implies r ¥X(S −) since f, G ¥ S −, so (ii) is true.
It is easy to find that X(S −) is a closed convex cone in X(S) since S − is a
s-sublattice. So (iii) and (iv) are true.
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For brevity, we use the notation {x > a} for the inverse image of the set
(a,.) under the mapping x: GQ R. Since

{xK r > a}=˛G (a < r)
{x > a} (a \ r)

and

{xN r > a}=˛{x > a} (a < r)
f (a \ r),

we see that xK r and xN r are S −-measurable, and hence xK r,
xN r ¥X(S −)=TX. This establishes (v).
Since Tx ¥ TX, qA ¥ TX, r ¥ TX, and TX is a convex cone, we have
aTx+bqA−r ¥ TX. Therefore ||x−Tx|| [ ||x−(aTx+bqA−r)||, and so (vi)
holds.
Sufficiency. Let S −={A ¥ S : qA ¥ TX}. Divide the proof into three
steps as follows:

1. We prove that S − is a s-sublattice of S.
By (ii) and (i), qF=0=T0=TqF, qG=1=T1=TqG. SoqF, qG ¥ TX,
that is, F, G ¥ S −. If A, B ¥ S −, then qA, qB ¥ TX. Observe that qA 2 B(t)=
(qA(t)+qB(t))N1 and qA 5 B(t)=(qA(t)+qB(t)−1)K0. Thus, by (iii) and
(v), qA 2 B, qA 5 B ¥ TX. So A 2 B, A 5 B ¥ S −.
Let A=1.

n=1 An, where An ¥ S
−(n=1, 2, ...) and A1 … A2 … A3 … · · · . By

Theorem 10 (Ogasawara) in [1, Chap. 10, Sect. 4] we find that X(S) is
order-continuous since X(S) is reflexive. Therefore ||qA−qAn ||Q 0 as
nQ. because m(A/An)Q 0 as nQ.. Using (iv), qA ¥ TX and it follows
A ¥ S −. If A=4.

n=1 An where An ¥ S
−(n=1, 2, ...) and A1 ‡ A2 ‡ A3 ‡ · · · .

By the above same arguments we can deduce that A ¥ S −. Thus we have
proved that S − is a s-sublattice of S.
2. We prove that X(S −)=TX.
Suppose x ¥ TX. For any a ¥R we write yn(t)=((3/2)n (x(t)−a)K0)N1.
By (iii) and (v) we see that yn ¥ TX(n=1, 2, ...). Observe that x(t) [ a
implies yn(t)=0=q{x−a}(t) and x(t) > a implies yn(t)Q 1=q{x > a}(t)
(nQ.). We can deduce q{x > a}−yn a 0 (nQ.) and so ||q{x > a}−yn ||Q 0
(nQ.) by the order-continuity of X(S). It follows that q{x > a} ¥ TX from
(iv). That is, {x > a} ¥ S − and then x ¥X(S −). Hence TX …X(S −).
Conversely, suppose x ¥X(S −). Then {x > a} ¥ S − and so q{x > a} ¥ TX
for any a ¥ R.
Notice that xK (−m) a x as mQ. and thus ||xK (−m)−x||Q 0 as
mQ.. We need only prove xK (−m) ¥ TX(m=1, 2, ...) to show that
x ¥ TX by (iv). However, xK (−m)=(xK (−m)+m)−m and −m ¥ TX, so

PREDICTION OPERATORS 149



from (iii) we see that we only need to prove xK (−m)+m ¥ TX. Moreover,
xK (−m)+m \ 0 and xK (−m)+m ¥X(S −), since X(S −) is a convex cone.
In what follows, we need only prove that 0 [ x ¥X(S −) implies x ¥ TX.
By Lemma 3 in [1, Chap. 4, Sect. 3],

>x− C
n2n

k=0
(k/2n) q{(k+1)/2n \ x \ k/2n}>Q 0 as nQ..

However,

C
n2n

k=0
(k/2n) q{(k+1)/2n \ x \ k/2n}=(1/2n) C

n2n

k=0
q{x > k/2n} ¥ TX

since q{x > k/2n} ¥ TX(n=1, 2, ...; k=1, 2, ..., n2n) and by using (iii). Con-
sequently x ¥ TX by (iv). Hence X(S −) … TX.
3. We prove that T( · )=p( · | X(S −)).
It is well known that p( · | X(S −)) has meaning since X(S) is reflexive
and strictly convex.
If x ¥ TX, then Tx=x=p(x | X(S −)).
Now suppose x ¨ TX. Since X(S) is smooth, x−Tx has a unique
support functional fx−Tx ¥X(S)g such that ||fx−Tx ||g=1 and fx−Tx(x−Tx)
=||x−Tx||. Also fx−Tx(Tx)=limlQ 0 (||x−Tx+lTx||− ||x−Tx||)/l exists
in the Gateaux sense. Nevertheless, ||x−Tx+lTx||=||x−(1−l) Tx||
\ ||x−Tx|| for |l| sufficiently small by (vi). This implies that
limlQ 0+ (||x−Tx+lTx||− ||x−Tx||)/l \ 0 and lim lQ 0 − (||x−Tx+lTx||−
||x−Tx||)/l [ 0. Hence

fx−Tx(Tx)=0. (1)

By the same arguments we can deduce that

fx−Tx(r)=0 (r ¥ R). (2)

For any qA ¥ TX, again by (vi) we have

fx−Tx(−qA)= lim
lQ 0+

(||x−Tx+lTx||− ||x−Tx||)/l \ 0

and so fx−Tx(qA) [ 0.
For any 0 [ u ¥ TX, we have ||u−(1/2n);n2n

k=0 q{u > k/2n} ||Q 0 as nQ..
Since {u > k/2n} ¥ S −, q{u > k/2n} ¥ TX, we get fx−Tx(q{u > k/2n}) [ 0 (n=
1, 2, ...; k=1, 2, ..., n2n). Furthermore, fx−Tx((1/2n);n2n

k=0 q{u > k/2n}) [ 0,
and so fx−Tx(u) [ 0.
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In the general case, since 0 [ uK (−m)+m ¥ TX(m=1, 2, ...), we
have fx−Tx(uK (−m)+m) [ 0(m=1, 2, ...). Combining with Eq. (2),
fx−Tx(uK (−m)) [ 0(m=1, 2, ...). But ||u−(uK (−m))||Q 0(mQ.). So

fx−Tx(u) [ 0(u ¥ TX=X(S −)). (3)

By Eqs. (3) and (1), for any u ¥X(S −) we have

||x−Tx||=fx−Tx(x−Tx)=fx−Tx(x) [ fx−Tx(x−u)

[ ||fx−Tx ||g ||x−u||=||x−u||.

This means Tx=p(x | X(S −)).
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